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I. INTRODUCTION

It is well known that Euler}Bernoulli beam theory neglects the e!ect of transverse shear
strain on the bending solutions because the assumption of plane cross-sections perpendicular
to the axis of the beam remaining plane and perpendicular to the axis after deformation. This
simple beam theory can give excellent solutions to the vibration analysis of slender beams.
However, it cannot present accurate values for the modes of thick beams or sandwich beams.

Timoshenko [1, 2] was evidently the "rst to study thick beams taking into consideration
the in#uences of transverse shear deformation. In the Timoshenko beam theory, plane
cross-sections remain plane but not necessarily normal to the neutral axis after
deformation, thus admitting a non-zero transverse shear strain. The study on vibration of
multi-span Euler}Bernoulli beams has been carried out by various methods such as
graphical network method [3], "nite element method [4], integral equation method [5] and
U-transformation method [6, 7], etc. Huang [8] derived the exact solutions of
eigenfrequencies and modes for a one-span Timoshenko beam under various boundary
conditions. He and Huang [9] used the dynamic sti!ness method to analyze the free
vibration of continuous Timoshenko beam. Moreover, Chen and Cai [10] used the
U-transformation method to analyze the static deformation of the Timoshenko beams with
period supports.

In this paper, the free vibration of multi-span Timoshenko beams is studied by the
Rayleigh}Ritz method. The static Timoshenko beam functions, which are composed of a set
of transverse de#ection functions and a set of rotational angle functions, are developed as
the trial functions. These transverse de#ection functions and rotation-angle functions are
the complete solutions of a multi-span Timoshenko beam under a series of static sinusoidal
loads distributed along the length of the beam. Each of the trial functions is a sine or cosine
function plus a polynomial function of no more than the third order. A uni"ed program can
easily be provided because the change of boundary conditions of the beam and the number
and locations of internal point supports only results in a corresponding change of
coe$cients of the low order polynomials.

2. EIGENFREQUENCY EQUATION

Consider a straight multi-span beam with the length l, the cross-sectional area A and the
area moment of inertia I, as shown in Figure 1. The beam has J internal point supports,
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respectively, at x
j
( j"1, 2,2 , J ), which prevent from transverse de#ection of the beam but

o!er no resistance to normal rotation of the beam.
According to Timoshenko beam theory, two independent variables: transverse

de#ection y and normal rotational angle t due to bending are used to describe the
deformation of the beam. The strain energy ; and the kinetic energy ¹ of the beam are
given as
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where E is Young's modulus, G is the shear modulus, o is the mass per unit volume and i is
the shear correction factor. When the beam makes free vibration, the transverse de#ection
and the normal rotation can be written as

y (x, t)"> (x)e*ut, t (x, t)"W(x)e*ut, (2)

where u is the radian eigenfrequency and i"J!1.
Introducing dimensionless co-ordinate and parameters

m"x/l, X2"oAu2l4/(EIn4), c"EI/(iGAl2), g"I/(Al2). (3)

The Lagrangian function ¸ can be written as follows:
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Assuming that >(m) and W(m) can be written in the form of in"nite series as follows:
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where both a
n
and b

n
are unknown coe$cients,>

n
(m) and W

n
(m) are the trial functions, which

satisfy at least the geometric boundary conditions of the beam and if possible, all the
boundary conditions.

Substituting equation (5) into equation (4), then truncating the series up to N#1 (for
simplicity, the same number of terms are taken for >(m) and W (m)) and applying the
well-known Rayleigh}Ritz approach
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one has the eigenfrequency equation
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Eigenvalues X
j

( j"1, 2,2, 2N) and the 2N unknown coe$cients a
n

and
b
n

(n"1, 2,2, N) corresponding to every eigenvalue can be easily given by using the
standard eigenvalue program to equation (7).

3. STATIC TIMOSHENKO BEAM FUNCTIONS

Again consider the multi-span Timoshenko beam as shown in Figure 1. Now, the beam is
acted by the static q (m) along the length of the beam. The stress}displacement relations of
the Timoshenko beam are given by

M(m)"!

EI

l2

dW(m)

dm
, <(m)"

iGA

l C
d>(m)

dm
!W(m)D , (9)

where M(m) is the bending moment of the beam and <(m) is the transverse shear force.
Considering the reaction forces p

j
( j"1, 2,2, J ) of the point supports as external forces

acted on beam, the equilibrium equations of stress are given by
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where Q(m)"EIq(m)/l4 is the dimensionless load, P
j
"p

j
l3/EI is the dimensionless reaction

force of the jth point support and d(m!m
j
) is the Dirac-delta function. At each end of the

beam, two boundary conditions can be presented. Taking the end m"0 as an example, one
has

>(0)"0, W(0)"0 for the clamped end (C),

>(0)"0, M(0)"0 for the simply supported end (S),

M(0)"0, <(0)"0 for the free end (F). (11)
Figure 1. A Timoshenko beam with internal point supports.
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Similarly, the boundary conditions at the end m"1 can also be presented. The zero-
de#ection conditions of the beam at point supports can be given as

>(m
j
)"0, j"1, 2, 3,2, J. (12)

For an arbitrarily distributed load Q(m), one can expand it into a Fourier sinusoidal series in
the interval (0, 1) as follows:
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Q
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where Q
n
(n"1, 2, 3,2) are the unknown coe$cients, which can be uniquely determined

by Q(m). Correspondingly, the solutions of >(m) and W (m) can be written as follows:
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Substituting equations (10), (13) and (14) into equation (9), one has
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Solving the di!erential equation gives
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Substituting the above equation into equation (9), >
n
(m) can be solved as follows:
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In equations (16) and (17), both D
ni

(i"0, 1 ,2, 3) and P
nj

( j"1, 2,2, J) are unknown
constants. For beams without rigid-body movements, they can be uniquely determined by
the boundary conditions and zero-de#ection conditions at internal point supports.

Substituting equations (16) and (17) into equations (11) and (12) gives
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In equation (18), A
11

is a J]4 matrix, A
12

is a J]J matrix and S
n1

is a J]1 matrix.
They can be determined by equation (12). Without loss of generality, assuming m
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if i(j, one has
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While A
21

is a 4]4 matrix, A
22

is a 4]J matrix and S
n2

is a 4]1 matrix. They can be
determined by equation (11). For example, if the beam is simply supported at two ends, one
has
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and if the beam is clamped at two ends, one has
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Similar formulations can be obtained for other boundary conditions. It should be pointed
out that for S}F, F}S and F}F beams without internal point supports and for F}F beams
only with an internal point support, the unknown coe$cients in equations (16) and (17)
cannot be determined by equations (11) and (12) because of the presence of rigid-body
movements. In such a case, the modes of rigid-body modes should be added into the basic
solutions described by equation (14). An e!ective approach to solving this problem has been
presented [11], which is given in Table 1. Observing equations (20)}(22), one can see that the
change of boundary conditions of a beam and the number and locations of internal point
supports only results in a corresponding change of the coe$cients of the low order
polynomials. And every element in sub-matrices A

ij
(i, j"1, 2) are independent of the

variable n. Therefore, only one inverse calculation is needed to determine D1
n
and P1

n
for all n.

This will result in a very small computational cost. Moreover, the parameter c in
equation (17), which is referred to as shear correction coe$cient of Timoshenko beams,
represents the e!ect of shear strain of the beam on the trial functions. It is obvious that for
an Euler}Bernoulli beam, c takes zero value because the e!ect of shear deformation is
neglected. In this case, the static Timoshenko beam functions automatically degenerate into
the static Euler}Bernoulli beam functions which have been successfully applied to the
vibration analysis of rectangular thin plates with internal line supports [12].
TABLE 1

¹he static ¹imoshenko beam functions (S¹BF) for beams with rigid-body movements

Boundary and internal The "rst The second STBF The third and higher STBF
point-support conditions STBF

F}F beam without
internal point supports

>
1
(m)"1,

W
1
(m)"0

>
2
(m)"m!1/2,

W
2
(m)"1

The "rst and higher STBF
for the S}S beam without
internal point supports

S}F beam without internal
point supports

>
1
(m)"m,

W
1
(m)"1

The "rst STBF for the
S}S beam without
internal point supports

The second and higher
STBF for the S}S beam
without internal point
supports

F}S beam without
internal point supports

>
1
(m)"1!m,

W
1
(m)"!1

As above As above

F}F beam with an
internal point support
at m"m

1

>
1
(m)"m!m

1
,

W
1
(m)"1

The "rst STBF for the
S}F (or F}S) beam with
the internal point support

The second and higher
STBF for the S}F (or F}S)
beam with the internal point
support
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4. CONVERGENCE AND COMPARISON STUDIES

In order to demonstrate the low computational cost and high accuracy of the present
method, the convergence and comparison studies are carried out. In all the following
analysis, the rectangular cross-sectional beams with shear correction factor i"5/6 and the
Poisson ratio k"0)3 are considered. The "rst six dimensionless eigenfrequencies of
simply}simply supported and clamped}clamped beams, respectively, with two, three and
four unequal spans are given in Table 2. The number of terms of the static Timoshenko
beam functions steadily increases from 6 to 10. One can see that the convergence is very
rapid. In general, 10 terms of the static Timoshenko beam functions are enough to give
satisfactory results.

The comparison study has been given in Table 3 for the "rst "ve dimensionless
eigenfrequencies of Timoshenko beams with equal spans and a thickness ratio h/l"0)15 by
TABLE 2

¹he convergence study on the ,rst six dimensionless eigenfrequencies of S}S and C}C
¹imoshenko beams with unequal spans for h/l"0)1

B C N X
1

X
2

X
3

X
4

X
5

X
6

J"1; m
1
"0)4

S}S 6 3)1751 6)7840 10)5296 18)7767 20)6422 33)2617
7 3)1751 6)7840 10)5294 18)7767 20)6057 29)7518
8 3)1751 6)7840 10)5294 18)7767 20)5978 29)7017
9 3)1751 6)7840 10)5293 18)7767 20)5910 29)6710

10 3)1751 6)7840 10)5293 18)7767 20)5910 29)6710
C}C 6 4)5490 9)0570 12)1898 20)5255 22)4319 34)0617

7 4)5490 9)0557 12)1897 20)4768 22)4035 30)8942
8 4)5490 9)0557 12)1895 20)4754 22)3499 30)8803
9 4)5490 9)0557 12)1891 20)4738 22)3337 30)7818

10 4)5490 9)0557 12)1890 20)4737 22)3316 30)7797

J"2; m
1
"0)3; m

2
"0)6

S}S 6 6)6148 10)2565 13)6864 20)0138 32)6463 33)4751
7 6)6147 10)2565 13)6836 19)9896 29)6832 33)1374
8 6)6147 10)2565 13)6801 19)9803 29)5714 32)1933
9 6)6147 10)2564 13)6801 19)9781 29)5678 31)8339

10 6)6147 10)2564 13)6801 19)9781 29)5678 31)8339
C}C 6 8)7265 12)1226 15)3668 21)9658 33)4839 34)5207

7 8)7259 12)1221 15)3473 21)9650 30)8110 33)9586
8 8)7258 12)1221 15)3368 21)9223 30)8080 33)1165
9 8)7258 12)1219 15)3350 21)9116 30)6570 32)8440

10 8)7258 12)1218 15)3348 21)9103 30)6561 32)8373

J"3; m
1
"0)2; m

2
"0)5; m

3
"0)7

S}S 6 10)9227 12)3318 20)9822 23)3999 32)3176 33)2982
7 10)9226 12)3261 20)8911 23)0924 31)3022 32)6694
8 10)9224 12)3261 20)8778 23)0243 30)4147 32)2050
9 10)9223 12)3261 20)8737 23)0013 30)3954 31)6505

10 10)9223 12)3261 20)8737 23)0013 30)3954 31)6505
C}C 6 12)3312 14)1306 23)1402 25)4437 32)7319 34)8853

7 12)3267 14)1162 23)0942 25)0967 32)7166 33)1707
8 12)3261 14)1135 23)0329 25)0665 31)8201 32)8065
9 12)3261 14)1127 23)0017 25)0524 31)6302 32)5107

10 12)3261 14)1125 23)0011 25)0492 31)6271 32)5061



TABLE 3

¹he comparison study of the ,rst ,ve dimensionless eigenfrequencies of S}S; C}S and C}C
¹imoshenko beams with unequal spans for h/l"0)15

B C Methods X
1

X
2

X
3

X
4

X
5

J"0
S}S Present 0)9644 3)5194 7)0424 11)0702 15)3444

DSs 0)9644 3)5194 7)0424 11)0702 15)3444
C}S Present 1)4386 4)1633 7)6626 11)5814 15)7293

DS 1)4386 4)1632 7)6625 11)5807 15)7273
C}C Present 1)9814 4)7860 8)2462 12)0604 16)0889

DS 1)9814 4)7859 8)2461 12)0580 16)0887

J"1; m
1
"1/2

S}S Present 3)5194 4)7860 11)0702 12)0605 19)7316
DS 3)5194 4)7859 11)0702 12)0580 19)7316

C}S Present 3)9019 5)6874 11)3900 12)6552 19)8936
DS 3)9019 5)6873 11)3898 12)6489 19)8661

C}C Present 4)7860 6)0915 12)0604 12)8907 20)2670
DS 4)7859 6)0915 12)0580 12)8821 20)2510

J"2; m
1
"1/3; m

2
"2/3

S}S Present 7)0424 7)9126 9)6619 19)7316 20)1726
DS 7)0424 7)9123 9)6600 19)7316 20)1532

C}S Present 7)2275 8)7777 10)3371 19)8577 20)5234
DS 7)2774 8)7765 10)3358 19)8554 20)4854

C}C Present 7)9127 9)6617 10)5932 20)1646 20)8210
DS 7)9123 9)6600 10)5929 20)1532 20)7542

J"3; m
1
"1/4; m

2
"1/2; m

3
"3/4

S}S Present 11)0702 11)5802 12)8884 14)3774 28)6069
DS 11)0702 11)5784 12)8821 14)3664 28)6069

C}S Present 11)2013 12)1646 13)6656 14)8869 28)6582
DS 11)2010 12)1606 13)6550 14)8808 28)6511

C}C Present 11)5799 12)8903 14)3778 15)0722 28)7874
DS 11)5784 12)8821 14)3664 15)0708 28)7290

J"4; m
1
"1/5; m

2
"2/5; m

3
"3/5; m

4
"4/5

S}S Present 15)3444 15)6186 16)4172 17)6368 18)9395
DS 15)3444 15)6157 16)4016 17)5890 18)8586

C}S Present 15)4133 15)9562 16)9863 18)3124 19)3655
DS 15)4126 15)9486 16)9578 18)2482 19)3089

C}C Present 15)6187 16)4172 17)6338 18)9178 19)5235
DS 15)6157 16)4016 17)5890 18)8586 19)4781

sDynamic sti!ness method.
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using the present method and the dynamic sti!ness (DS) method [9] respectively. Three
kinds of boundary conditions: simply}simply supported; simply supported}clamped and
clamped}clamped, are considered. The number of point supports is steadily increased from
zero to four. The accuracy of eigenfrequencies given by dynamic sti!ness method is 10~5 by
using the method of successive bisection to the dynamic sti!ness matrix. Excellent
agreement has been observed for all cases, which shows that the present method has very
high accuracy.



TABLE 4

¹he dimensionless fundamental eigenfrequencies of ¹imoshenko beams with equal spans
for di+erent thickness ratios

h/l C}C C}S S}S C}F S}F F}F

J"0
0)001 2)2669 1)5622 1)0000 0)3562 0)0 0)0
0)01 2)2653 1)5616 0)9998 0)3562 0)0 0)0
0)1 2)1249 1)5032 0)9836 0)3534 0)0 0)0

J"1; m
1
"1/2

0)001 6)2487 4)6664 4)0000 1)0000 0)9191 0)0
0)01 6)2387 4)6618 3)9973 0)9996 0)9189 0)0
0)1 5)4457 4)2672 3)7586 0)9606 0)8969 0)0

J"2; m
1
"1/3; m

2
"2/3

0)001 11)5333 9)6942 8)9999 2)1668 2)1527 1)8176
0)01 11)5028 9)6761 8)9863 2)1651 2)1511 1)8171
0)1 9)3696 8)3170 7)9187 2)0165 2)0114 1)7642

J"3; m
1
"1/4; m

2
"1/2; m

3
"3/4

0)001 18)6651 16)7048 15)9996 3)8409 3)8390 3)6769
0)01 18)5914 16)6540 15)9568 3)8357 3)8338 3)6732
0)1 14)1279 13)3232 13)0366 3)4190 3)4189 3)3567

J"4; m
1
"1/5; m

4
"2/5; m

3
"3/5; m

4
"4/5

0)001 27)7346 25)7093 24)9989 6)0023 6)0020 5)9322
0)01 27)5816 25)5927 24)8949 5)9897 5)9895 5)9211
0)1 19)5452 18)9738 18)7767 5)0740 5)0740 5)0677

J"5; m
1
"1/6; m

2
"1/3; m

3
"1/2; m

4
"2/3; m

5
"5/6

0)001 38)7747 36)7112 35)9978 8)6459 8)6459 8)6173
0)01 38)4888 36)4781 35)7829 8)6201 8)6201 8)5925
0)1 25)4286 25)0398 24)9080 6)9190 6)9190 6)9168
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5. NUMERICAL EXAMPLES

The e!ect of thickness ratio on dimensionless fundamental eigenfrequencies of beams
with equal spans from one up to six is given in Table 4. Three di!erent thickness ratios:
h/l"0)001, 0)01, 0)1 and six kinds of boundary conditions are considered. It is shown
that eigenfrequencies decrease with the increase of thickness ratio, however, increase
with the increase of span number and boundary constraints. Moreover, one can "nd that
the e!ect of thickness ratio on eigenfrequencies increases with the increase of the span
number.

6. CONCLUDING REMARKS

The free vibration of multi-span Timoshenko beams is studied by the Rayleigh}Ritz
method. The static Timoshenko beam functions are developed as the trial functions in the
present analysis, which are the complete solutions of transverse de#ections and rotational
angles of the beam when a series of static sinusoidal loads acts on the beam. The high
accuracy and low computational cost have been con"rmed by convergence and comparison
studies.
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